arrex
Release v0.5

jimy byerley

Aug 07, 2023

CONTENTS

1 Submodules: 3
Python Module Index 11

Index 13

arrex, Release v0.5

Arrex is a module that allows to create typed arrays much like numpy.ndarray and array.array, but resizeable and using
any kind of element.

The elements must be extension-types (eg. class created in compiled modules) and must have a packed and copyable
content: a fixed size and no reference or pointers This is meant to ensure that the content of those objects can be copied
from the object to the array and back to any object after, or even deleted without any need of calling a constructor or
destructor function.

basic usage:

>>> from arrex import *

>>> a = typedlist([

myclass(...),
myclass(...),

e], dtype=myclass)
>>> a[0]
myclass(...)

in that example, myclass can be a primitive numpy type, like np.float64

>>> import arrex.numpy # this is enabling numpy dtypes for arrex
>>> typedlist(dtype=np.float64)

it can be a more complex type, from module pyglm for instance

>>> import arrex.glm # this is enabling glm dtypes for arrex
>>> typedlist(dtype=glm.vec4)

[>>> a = typedlist(dtype=vec3)

use it as a list

>>> # build from an iterable

>>> a = typedlist([], dtype=vec3)

>>>

>>> # append some data

>>> a.append(vec3(1,2,3))

>>>

>>> # extend with an iterable

>>> a.extend(vec3(i) for i in range(5))

>>>

>>> len(a) # the current number of elements
6

>>> a.owner # the current data buffer
b'......... !

>>> al[0]

vec3(1,2,3)

Use it as a slice:

>>> myslice = a[:5] # no data is copied
typedlist(....)

Use it as a view on top of a random buffer

CONTENTS 1

arrex, Release v0.5

>>> a = np.ones((6,3), dtype="£f4")
>>> myslice = typedlist(a, dtype=vec3)

It does support the buffer protocol, so it can be converted into a great variety of well known arrays, even without any
copy

[>>> np.array(typedlist([....]1))

2 CONTENTS

CHAPTER
ONE

SUBMODULES:

1.1 list

class typedlist

list-like array that stores objects as packed data. The objects added must necessarily be packed objects (builtin
objects with no references).

This is a dynamically sized, borrowing array, which mean the internal buffer of data is reallocated on insertion,
but can be used to view and extract from any buffer.

Methods added to the signature of list:

reserve(n) reallocate if necessary to make sure n elements can
be inserted without reallocation

capacity() -> int return the current number of elements that can be
contained without reallocation

shrink () shorten the allocated memory to fit the current content
also the slices do not copy the content

Use it as a list:

>>> a = typedlist(dtype=vec3)

>>>

>>> # build from an iterable

>>> = typedlist([], dtype=vec3)

>>>

>>> # append some data

>>> a.append(vec3(1,2,3))

>>>

>>> # extend with an iterable

>>> a.extend(vec3(i) for i in range(5))
>>>

>>> len(a) # the current number of elements
6

>>>

>>> a.owner # the current data buffer

s3]

Use it as a slice:

arrex, Release v0.5

>>> # no data is copied
>>> myslice = a[:5]
typedlist(....)

Use it as a view on top of a random buffer

>>> a = np.ones((6,3), dtype="£f4")
>>> myslice = typedlist(a, dtype=vec3)

—

It does support the buffer protocol, so it can be converted in a great variety of well known arrays, even without
any copy

[>>> np.array(typedlist([....]))

Constructors:

typedlist()

typedlist (drype, reserve=None)
typedlist (iterable, dtype, reserve=None)
typedlist (buffer, dtype)

size
byte size of the current content

Type

int
allocated

byte size of the memory allocated memory

Type
int
owner
object realy owning the data instead of the current typedlist
dtype
the python data type
Type
type
ddtype
the data type declaration
Type
DDType
static empty(dtype, size)
create a new typedlist with the given size and unitialized elements of type dtype
static full (value, size)
create a new typedlist with the given size, all elements initialized to value.

* Methods matching those from list

4 Chapter 1. Submodules:

arrex, Release v0.5

append (value)
append the given object at the end of the array

if there is not enough allocated memory, reallocate enough to amortize the realocation time over the multiple
appends

extend (iterable)
append all elements from the other array

insert (index, value)

insert value at index

clear()
remove all elements from the array but does not deallocate, very fast operation

reverse()
reverse the order of elementd contained

index (value)
return the index of the first element binarily equal to the given one

_,add__0O

concatenation of two arrays

—mul__0O
duplicate the sequence by a certain number

__getitem__QO
self[index]

currently supports:
* indices
* negative indices
* slices with step=1
__setitem__(key, value,/)
Set self[key] to value.
__delitem__(key,/)
Delete selfkey].

__iter__0O

yield successive elements in the list

——copy__O
shallow copy will create a copy of that array referencing the same buffer

__deepcopy__(memo)

deep recursive copy, will duplicate the viewed data in the underlying buffer

* The following methods are added on top of python 1ist signature, in order to manage memory in a more
efficient way.

capacity(Q)
return the total number of elements that can be stored with the current allocated memory

. list 5

arrex, Release v0.5

reserve (amount: int)
Make sure there is enough allocated memory to append the given amount of elements.

if there is not enough of allocated memory, the memory is reallocated immediately.

shrink ()
reallocate the array to have allocated the exact current size of the array

1.2 dtypes

1.2.1 general

The dtype is the type of the elements in a buffer. Thanks to the ddtype system, it is very easy to create new dtypes on
top of pretty much everything.

Definitions:

type
a python type object (typically a class or a builtin type)

dtype
data dtype, meaning the type of the elements in an array, it can be a type, but more generally

anything that define a data format.

ddtype
declaration of data type, meaning a packet of things decribing how to pack/unpack that

dtype from/to an array

a ddtype always inherits from base class DDType which content is implemented at C level.

class DDType
base class for a declaration of data type (ddtype) DO NOT INSTANTIATE THIS CLASS FROM PYTHON, use

on of its specialization instead

dsize
byte size of the dtype when packed
Type
int
layout

layout of the packed data such as defined in module struct, or None if not defined

Type
bytes

key
the python dtype itself if this DDType is declared, None if not declared
declare (dtype, ddtype)

declare a new dtype

declared(key)
return the content of the declaration for the givne dtype

6 Chapter 1. Submodules:

arrex, Release v0.5

1.2.2 specialized dtypes

class DDTypeFunctions (dsize, pack, unpack, layout=None)

create a dtype from pure python pack and unpack functions

Example

>>> enum_pack = {'apple':b'a', 'orange':b'o', 'cake':b'c'}
>>> enum_unpack = {v:k for k,v in enum_direct.items()}
>>> enum_dtype = DDTypeFunctions(

dsize=1, # 1 byte storage
Soc pack=enum_pack.__getitem__, # this takes the python.,
—object and gives a bytes to dump
e unpack=enum_unpack.__getitem__, # this takes the bytes and.
—return a python object

)
>>> a = typedlist(dtype=enum_dtype) # declaration is not necessary

class DDTypeClass(type)

Create a dtype from a python class (can be a pure python class)
the given type must have the following attributes:
e frombytes or from_bytes or from_buffer
static method that initialize the type from bytes
e __bytes__ or tobytes or to_bytes
method that converts to bytes, the returned byte must always be of the same size

e __packlayout__ (optional) string or bytes giving binary format returned by __bytes__, it must follow
the specifications of module struct

* __packsize__ (optional) defines the byte size returned by __bytes
provided

optional if __packlayout__ is

J—)

Example

g
>>> class test_class:

__packlayout__ = 'ff'

_struct = struct.Struct(__packlayout__)

def __init__(self, x, y):
self.x = x
self.y =y

def __bytes__(self):

return self._struct.pack(self.x, self.y)
@classmethod
def frombytes(cls, b):

return cls(*cls._struct.unpack(b))

(continues on next page)

1.2. dtypes 7

arrex, Release v0.5

(continued from previous page)

def __repr__(self):
return '(x={}, y={})'.format(self.x, self.y)

>>> a = typedlist(dtype=test_class) # no declaration needed

class DDTypeStruct (struct)
create a dtype from a Struct object from module struct

Example

£>>> a = typedlist(dtype='fxBh') # no declaration needed

class DDTypeCType (type)
Create a dtype from a ctype

Example

>>> class test_structure(ctypes.Structure):
fields = [
('x', ctypes.c_int),
('y", ctypes.c_float),

1
def __repr__(self):
return '(x={}, y={})'.format(self.x, self.y)

>>> a = typedlist(dtype=test_structure)

class DDTypeExtension

DDTypeTypeExtension(type, layout=None, constructor=None)
Create a dtype for a C extension type.
This is the most efficient kind of dtype in term of access/assignation time.
In order to put an extension object into an array, it satisfy the following conditions:
* have fixed size known at the time of dtype creation (so any array element has the same)

 contain only byte copiable data (so nothing particular is done when copying/destroying the objects)

Warning: These conditions MUST be ensured by the user when declaring an extension type as a dtype, or
it will result in memory corruption and crash of the program

8 Chapter 1. Submodules:

arrex, Release v0.5

Example

[>>> arrex.declare(vec3, DDTypeExtension(vec3, 'fff', vec3))

1.2. dtypes 9

arrex, Release v0.5

10 Chapter 1. Submodules:

a

arrex, ??
arrex.dtypes, 6
arrex.list, 3

PYTHON MODULE INDEX

11

arrex, Release v0.5

12 Python Module Index

Symbols

__add__Q (typedlist method), 5
__copy__Q (typedlist method), 5
__deepcopy__Q) (typedlist method), 5
__delitem__Q) (typedlist method), 5
——getitem__Q) (typedlist method), 5
__iter__Q) (typedlist method), 5
__mul__Q) (typedlist method), 5
__setitem__Q) (typedlist method), 5

A

allocated (typedlist attribute), 4
append) (typedlist method), 4
arrex

module, 1
arrex.dtypes

module, 6
arrex.list

module, 3

C

capacityQ (typedlist method), 5
clear () (typedlist method), 5

D

DDType (class in arrex.dtypes), 6

ddtype (typedlist attribute), 4
DDTypeClass (class in arrex.dtypes), 7
DDTypeCType (class in arrex.dtypes), 8
DDTypeExtension (class in arrex.dtypes), 8
DDTypeFunctions (class in arrex.dtypes), 7
DDTypeStruct (class in arrex.dtypes), 8
declare() (in module arrex.dtypes), 6
declared() (in module arrex.dtypes), 6
dsize (DDType attribute), 6

dtype (typedlist attribute), 4

E

empty () (typedlist static method), 4
extend () (typedlist method), 5

INDEX

F

full Q) (typedlist static method), 4

index () (typedlist method), 5
insert () (typedlist method), 5

K

key (DDType attribute), 6

L

layout (DDType attribute), 6

M

module
arrex, 1
arrex.dtypes, 6
arrex.list, 3

O

owner (typedlist attribute), 4

R

reserve() (typedlist method), 5
reverse() (typedlist method), 5

S

shrink) (typedlist method), 6
size (typedlist attribute), 4

T

typedlist (class in arrex.list), 3
typedlist.typedlist() (in module arrex.list), 4

13

	Submodules:
	list
	dtypes
	general
	specialized dtypes

	Python Module Index
	Index

